
Expediting Exploration by A�ribute-to-Feature Mapping for
Cold-Start Recommendations

Deborah Cohen∗
Google Research
Tel-Aviv, Israel

debbycohen@gmail.com

Michal Aharon, Yair Koren,
and Oren Somekh

Yahoo Research, Haifa, Israel
(michala,yairkoren,orens)

@yahoo-inc.com

Raz Nissim∗
General Motors

Advanced Technical Center
Herzliya, Israel

raz.nissim@gm.com

ABSTRACT
�e item cold-start problem is inherent to collaborative �ltering
(CF) recommenders where items and users are represented by vec-
tors in a latent space. It emerges since CF recommenders rely solely
on historical user interactions to characterize their item inventory.
As a result, an e�ective serving of new and trendy items to users
may be delayed until enough user feedback is received, thus, re-
ducing both users’ and content suppliers’ satisfaction. To mitigate
this problem, many commercial recommenders apply random ex-
ploration and devote a small portion of their tra�c to explore new
items and gather interactions from random users. Alternatively,
content or context information is combined into the CF recom-
mender, resulting in a hybrid system. Another hybrid approach
is to learn a mapping between the item a�ribute space and the
CF latent feature space, and use it to characterize the new items
providing initial estimates for their latent vectors.

In this paper, we adopt the a�ribute-to-feature mapping ap-
proach to expedite random exploration of new items and present
LearnAROMA - an advanced algorithm for learning the mapping,
previously proposed in the context of classi�cation. In particular,
LearnAROMA learns a Gaussian distribution over the mapping
matrix. Numerical evaluation demonstrates that this learning tech-
nique achieves more accurate initial estimates than logistic regres-
sion methods. We then consider a random exploration se�ing, in
which new items are further explored as user interactions arrive.
To leverage the initial latent vector estimates with the incoming
interactions, we propose DynamicBPR - an algorithm for updat-
ing the new item latent vectors without retraining the CF model.
Numerical evaluation reveals that DynamicBPR achieves similar
accuracy as a CF model trained on all the ratings, using 71% less
exploring users than conventional random exploration.

KEYWORDS
Recommendation systems, collaborative-�ltering, random explo-
ration, item cold-start problem

∗�is work was done while Deborah and Raz were with Yahoo Research, Haifa, Israel.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys’17, August 27–31, 2017, Como, Italy.
© 2017 ACM. ISBN 978-1-4503-4652-8/17/08. . . $15.00.
DOI: h�p://dx.doi.org/10.1145/3109859.3109880

1 INTRODUCTION
In recent years, recommendation technologies have become an
essential tool for matching relevant content and services to users.
Whether these are news items, movies, mobile apps, or even ads,
recommender systems usually use historical user interactions and
stated preferences, and content information to characterize their
items. Techniques that rely on content information are known as
content-based [18], while techniques that rely solely on historical
users interactions, such as clicks, skips and ratings, are known as
collaborative �ltering (CF) [14]. Notably, CF techniques require
no domain knowledge or content analysis and excel at exploiting
popularity trends, which drive much of the observed user interac-
tions and typically would be completely missed by content based
approaches. In addition, relying directly on user behavior allows
uncovering complex and unexpected pa�erns that would be di�-
cult or impossible to pro�le using known data a�ributes. �erefore,
CF a�racted much a�ention in recent years, resulting in signi�cant
progress and adoption by many commercial systems.

Since CF recommenders rely only on historical user interactions
to characterize their entities, the lack of such data for new enti-
ties imposes an inherent problem known as the cold-start problem.
Hence, without su�cient historical user data, CF-based recom-
menders cannot reliably model new entities. Despite the fact that
users and items have similar representations in the latent space, the
users and items cold-start problems are essentially di�erent. �e
main di�erence comes from the ability to interview new users when
joining a service in order to bootstrap their modeling. Besides, in
most se�ings the number of users is much larger than the number
of items. Hence, a typical item usually gets more ratings than an
individual user provides.

To mitigate the CF item cold-start problem, a few known ap-
proaches are usually applied. �e most common method, used by
many commercial web-scale recommenders, is random exploration,
where a small random portion of the user tra�c is devoted to ex-
plore new items. �en, the resulting user feedback is used to model
the new items. �is approach is simple but ine�cient, since the
matching between users and items is almost arbitrary and recent
work shows that carefully selecting the exploring users is bene�cial
[1, 6]. Another common approach to combat the item cold-start
issue is to utilize item a�ributes in addition to the users feedback
resulting in a hybrid recommender. Numerous ways to integrate
the item a�ributes into the CF model have been suggested over the
years. �e basic principle driving this approach is that new items
share a�ributes with mature items. �erefore, the recommender
can characterize the la�er with latent vector representations of
their a�ributes and provide an initial representation for the new

items. Another approach which exploits item a�ributes as well, but
in an implicit way, is presented in [8]. In particular, the authors
train a CF model and then learn a linear mapping between the item
a�ributes space and the CF latent space. Once the mapping is set,
it is used to provide an initial estimate for the new items latent
vectors.

In this paper, we address the CF item cold-start problem and
adopt a hybrid approach. �e presentation is formulated in terms
of item cold-starts since this problem is typically more challenging.
However, the derivations and algorithms can be directly applied to
user cold-starts as well. Inspired by the approach of [8], we consider
item a�ributes to CF latent space mappings. In particular, in order
to learn the linear mapping between a�ributes and latent features,
we present LearnAROMA, a variant of the AROMA (Adaptive Reg-
ularization Of MAtrix models) algorithm, presented in [4, 5] in the
context of linear classi�cation. �e key principle of AROMA is
that instead of maintaining a single weight matrix, it considers a
Gaussian distribution over possible models. Moreover, while [8]
considers an initial estimate to the new item latent vectors only,
we also consider a random exploration se�ing where users interac-
tions with the new items are arriving. For this se�ing, we present a
simple algorithm, DynamicBPR, that updates the new items latent
vectors with the incoming interactions, using a regularized maxi-
mum likelihood convex objective. Our approach does not require
to retrain the CF model, which would be ine�cient in large scale
systems. Finally, we test our LearnAROMA based initial estimate
and update algorithm DynamicBPR using the MovieLens2K dataset,
which includes genre, and crew information in addition to users
ratings, and demonstrate their bene�ts over several baselines. �e
main contributions of this work are:

• �e LearnAROMA algorithm for learning items a�ributes
to latent space mapping, that provides an initial estimate
of new items latent vectors.

• �e DynamicBPR algorithm for updating new items latent
vectors during random exploration, leveraging their ini-
tial estimate with incoming users’ interactions, without
retraining the whole CF model.

• Numerical evaluation that demonstrates the superiority of
the LearnAROMA algorithm over the LearnMap algorithm
of [8]. In addition, the DynamicBPR algorithm is shown to
achieve similar accuracies to those achieved by retraining
the whole model, requiring far less interactions compared
to random exploration.

�e rest of the paper is organized as follows. In Section 2, we
review related work. Section 3 formulates the item cold-start prob-
lem and sets our goals. In Section 4, we describe LearnMap, an item
a�ributes to latent space mapping approach, to mitigate the CF item
cold-start problem. An alternative algorithm to learn this mapping,
LearnAROMA, is elaborated in Section 5. Section 6 formulates
the exploration se�ing and presents the DynamicBPR algorithm
that dynamically updates the latent vectors. Numerical evaluation
results are presented in Section 7. We conclude and consider future
work in Section 8.

2 RELATEDWORK
Several approaches have recently been proposed, that aim at miti-
gating the inherent item cold-start problem in CF recommenders.

�ese can be divided into twomain categories; pure CF systems that
gather exploratory feedback from users on new items, and hybrid
approaches that combine content-based and CF recommendation
techniques.

2.1 Pure CF Techniques
A naive common approach for this �rst category is to use an ex-
ploration bucket, where randomly selected users are exposed to
the new item, generating feedback for the la�er. �is simple and
ine�cient approach can be improved by selecting the most use-
ful users, who are more likely to be interested in the new items
[6], or who will provide the best characterization for them [1, 15].
Unfortunately, these approaches require user cooperation.

Other CF techniques address the wide sense cold-start users, that
is infrequent users with few ratings [13, 22]. In this se�ing, the users
latent vectors express similarities depending on the items rated by
the user. However, these can obviously not be applied to the narrow
sense cold-starts problem, where no ratings are available for new
entities (see [21] for online update of items with few ratings).

Another approach that combines exploration-exploitation simul-
taneously, is based on multi-armed bandit (MAB) where presenting
an item to a user in a speci�c context is abstracted as pulling a MAB
arm with some uncertain reward (cf., [3] and references therein).
However, these methods become very complex when the item in-
ventory is large (e.g., typical ad inventory can reach 200K items).

2.2 Hybrid Techniques
Hybrid techniques alleviate the need for users’ help by exploiting
content information. Several strategies can be adopted for creating
hybrid techniques: working directly in the item and user a�ribute
space [10, 11, 16, 17]; incorporating item a�ributes into the latent
space [19]; mapping the a�ribute space to the CF latent space in
order to estimate new items’ latent vectors [2, 8].

Avoiding asking real users for their help, [17] uses arti�cial users
or bots implementing various heuristics, in part based on content
information, to generate synthetic data. A stochastic hybrid ap-
proach, where the joint distribution of users vote vector is modeled
using a Boltzmann machine, is presented in [10, 11].

In [2], a similar framework as in [22] is considered, where the
mean prior of the item and user latent vectors are expressed as linear
functions of their corresponding known a�ributes. Here, given the
ratings and a�ributes, the goal is to �nd the maximum likelihood
estimate of the parameters that de�ne the mapping between the
a�ribute and latent domains. In addition, the authors consider an
incremental learning se�ing where for each batch of observations,
the current posterior becomes prior and is combined with the data
likelihood to provide an updated posterior.

A general approach referred to as factorization machines is pre-
sented in [19]. Special cases of the factorization machines include
but are not limited to the traditional matrix factorization (MF),
SVD++ (see [13]), nearest neighbor models and a�ribute-aware
models. In the la�er case, each a�ribute is associated with a latent
vector which are directly included in the feature vectors.

A hybrid MF-CF and content-based technique is adopted in [8].
�e goal is to learn the mapping function between the entities
(items) a�ribute space and their latent space. �e factorization

model is �rst trained on the known ratings. �en, two learning
approaches are suggested; the �rst is a K-Nearest Neighbor (KNN)
mapping where the new latent vectors are weighted averages of the
features of the k closest neighbors in the a�ribute space. �e second
approach assumes that the latent vectors are linear functions of
the a�ributes. Once the mapping functions are found, the latent
vector of a new entity with known a�ributes can be computed and
new item-user scores can be derived by taking the inner product
between corresponding user-item latent vectors (see also [23] where
the mapping approach is used sub-optimally as a baseline).

3 PROBLEM FORMULATION
In this section, we present the recommendation model and for-
mulate the item cold-start issue. We then describe our generic
framework and MF model training.

3.1 Model Description
Consider a system with N users andM items, includingM1 mature
items andM2 new items (cold-starts), so thatM = M1 +M2. Each
item is associated with a known L × 1 binary a�ribute vector aj
that contains the item content information (e.g., for movies: genres,
actors and directors). For example, consider a recommender sys-
tem for movies including the movies �e Bu�er�y E�ect and Toy
Story and the following L = 4 genres: Animation, Comedy, Drama,
Fantasy. If we assign consecutive indices in alphabetical order to
both the movies and genres, the resulting a�ributes vectors are
a1 = [0 0 1 0]T and a2 = [1 1 0 1]T . A�ributes representation is
not restricted to a binary set and the mapping derived here for
binary a�ributes, for the sake of simplicity, can be extended to
other a�ributes forms.

Let S be the N × M binary feedback matrix, with Si j = 1 if
user i has provided positive feedback on item j; otherwise Si j = 0.
Positive feedback refers to any user-item interaction, e.g. rating
or click, while negative feedback indicates a lack of interaction.
Denote the set of items for which user i has provided positive
feedback by I+i =

{
j |Si j = 1

}
and the set of items for which user i

has not provided feedback by I−i =
{
j |Si j = 0

}
. �e feedback for

mature items, namely Si j , for 1 ≤ j ≤ M1 is assumed to be known,
whereas it is dynamically discovered for new (or cold-start) items,
M1 < j ≤ M , one user-item interaction at a time.

In terms of items, our dataset is divided between mature and new
items. For new items, we distinguish between users that provide
feedback allowing for dynamic training and test users. We thus
divide the dataset into 3 parts, as shown in Fig. 1. �e �rst groupA1
constitutes themodel training group and is composed of theN users
and theM1 mature items. �e second group A2 is composed of N1
users and theM2 new items for dynamic training. Lastly, the third
group A3 represents the test group and includes the remaining
interactions (or feedback) between the N2 = N − N1 users andM2
new items.

Our goal is twofold. First, we provide an initial estimate for
the latent vectors of new items, before any feedback for them is
acquired. Second, we dynamically update these latent vectors with
respect to sequentially incoming feedback without retraining the
model.

Figure 1: Dataset division.

3.2 High-Level Framework
Our approach includes three stages. �e �rst is a traditional MF that
trains a static and stable model composed of users and mature items,
as described earlier. �is stage results in latent vectors ui , 1 ≤ i ≤ N
and vj , 1 ≤ j ≤ M1, for users and items, respectively. �e second
stage derives a mapping between item content-based a�ributes aj
and latent vectors vj computed in the previous stage, yielding a
mapping matrix W. Using the a�ribute-to-feature mapping, we
can then compute initial latent vectors v̂0j = Waj for new items,
or cold-starts, namely M1 < j ≤ M . �e last stage dynamically
updates the new mapped latent vectors v̂j from new feedback on
cold-starts items. �is dynamic training of cold-start items does
not require retraining the mature model, but only expands it to
include new items.

In the next section, we describe the MF approach we adopt.
In Sections 4 and 5, we present two a�ribute-to-feature mapping
methods. Last, in Section 6, we show how the latent vectors can be
dynamically updated.

3.3 BPR-MF Model Training
�eprinciple ofMF is to represent both items and users in a common
latent space, which aims at capturing pa�erns of users feedback
on items. More speci�cally, the latent vectors ui , 1 ≤ i ≤ N and
vj , 1 ≤ j ≤ M1, for users and items, respectively, are inferred from
the feedback such that the corresponding score of user i to item j
is estimated by their inner product

ŷi j =
〈
ui , vj

〉
+ bi + bj =

K∑
k=1

uikvjk + bi + bj . (1)

Here, K is the latent space dimension, uik (vjk) denotes the kth
latent factor (or latent feature) of vector ui (vj), and bi and bj are
the biases of user i and item j , respectively. �ese users-items scores
are used to rank the items for a speci�c user.

Speci�cally, we consider the Bayesian personalized ranking (BPR)
[20] framework, used for model training with implicit feedback.
�e key idea is to consider entity pairs instead of single entities in
the loss function, allowing the interpretation of positive-only data
as partial ranking data and canceling the impact of entity bias. Here,

we consider pairs of items per user, where the �rst item received
positive feedback from the user and the second one did not. �e
BPR-MF optimization criterion, expressed as follows

max
ui ,vp,vq,bp,bq

∑
i,p,q∈A1

ln 1
1 + e−x̂ipq

− λ
(
| |ui | |2 + | |vp | |2 + | |vq | |2

)
− λb

(
b2p + b

2
q

)
(2)

is a non-convex optimization problem. Here, λ, λb > 0 are regular-
ization parameters, A1 =

{
(i,p,q)|p ∈ I+i ∧ q ∈ I

−
i
}
and

x̂ipq = ŷip − ŷiq . (3)

Note that in this case, the user bias bi in (1) cancels out; thus, we
do not consider user biases.

As the optimization criterion (2) is di�erentiable, an obvious
choice for maximization is gradient descent. Since full gradient
descent su�ers from slow convergence, the stochastic approach is
adopted in [20]. It has been empirically shown [20] that the order
in which the training pairs are traversed is crucial. In particular, an
item-wise or user-wise traverse approach leads to poor convergence
whereas the proposed bootstrap sampling method, that is drawing
user-items triples uniformly at random, converges much faster.
In order to learn the BPR-MF model, we thus use the LearnBPR
algorithm from [20], summarized in Algorithm 1.

Algorithm 1 LearnBPR
Input:

S(A1) - feedback of N users onM1 mature items
vj , bj , 1 ≤ j ≤ M1 - mature items latent vectors and biases

α ,αb - update step sizes
λ, λb - regularization parameters

Output:
ui , 1 ≤ i ≤ N - users latent vectors

1: repeat
2: draw (i,p,q) from A1
3: x̂ipq ← ŷip − ŷiq
4: for 1 ≤ k ≤ K do
5: uik ← uik + α

(
e−x̂ipq

1+e−x̂ipq
(vpk −vqk) − λuik

)
6: vpk ← vpk + α

(
e−x̂ipq

1+e−x̂ipq
uik − λvpk

)
7: vqk ← vqk + α

(
− e−x̂ipq

1+e−x̂ipq
uik − λvqk

)
8: bp ← bp + αb

(
e−x̂ipq

1+e−x̂ipq
− λbbp

)
9: bq ← bq + αb

(
− e−x̂ipq

1+e−x̂ipq
− λbbq

)
10: end for
11: until convergence

4 ATTRIBUTE-TO-FEATURE MAPPING
�e �rst stage of the training, described in Section 3.3, is a tradi-
tional BPR-MF whose output are latent vectors ui for each user
1 ≤ i ≤ N and vj for each mature item 1 ≤ j ≤ M1. �e next
training stage maps the item a�ribute vectors aj to the item latent
space, such that

vj = h(aj), (4)

for some function h : ZL2 → R
K , where Z2 = {0, 1}. We focus on a

linear mapping, where the mapping function is represented by a
K × L matrix. In this stage, we learn the mapping matrix W.

In this case, the inner product between latent vectors becomes
ŷi j =

〈
ui , vj

〉
= uTi Waj . (5)

�e convex optimization criterion with respect to W is then ex-
pressed as follows

max
W

∑
i,p,q∈A

ln 1
1 + e−x̂ipq

− λ | |W| |F , (6)

where | | · | |F denotes the Frobenius norm and x̂ipq = ŷip − ŷiq , with
ŷip and ŷiq de�ned in (5).

In order to learn the mapping matrix W, the LearnMap algorithm
from [8], summarized in Algorithm 2 for completeness, uses a gra-
dient descent approach. In the algorithm description, wk denotes
the kth row of W.

Algorithm 2 LearnMap
Input:

S(A1) - feedback of N users onM1 mature items
ui , 1 ≤ i ≤ N - users latent vectors

aj , 1 ≤ j ≤ M1 - mature items a�ribute vectors
α - update step size

λ - regularization parameter
Output:

W - K × L a�ribute-to-feature mapping matrix
1: repeat
2: draw (i,p,q) from A1
3: x̂ipq ← ŷip − ŷiq
4: for 1 ≤ k ≤ K do
5: wk ← wk + α

(
e−x̂ipq

1+e−x̂ipq
uik (ap − a1) − λwk

)
6: end for
7: until convergence

Once W is learnt, the resulting item latent vectors are then given
by

v̂0j =Waj . (7)
�e mapped item latent vectors v̂0j , forM1 < j ≤ M , are our initial
estimate for new, or cold-start, items.

It is noted that the linear approach can be extended to non-linear
mapping to account for interactions between a�ributes. However,
we found that non-linear mappings (e.g., quadratic polynomial
mapping) yield marginal improvement.

5 AROMA-BASED MAPPING
In this section, we present an alternative mapping learning al-
gorithm based on the adaptive regularization of matrix models
(AROMA) algorithm, presented in [4] in the context of linear clas-
si�cation. �e matrix approach AROMA extends its vector version
adaptive regularization of weights (AROW) [5] to learn a weight ma-
trix W and its corresponding con�dence coe�cient matrix Σ. �e
key idea of AROW is that instead of maintaining a single weight
vector w, it considers distribution over possible models. In particu-
lar, AROW maintains a Gaussian distribution over vectors denoted
by N(w,Σ).

5.1 Preliminaries
�e goal of AROMA is to learn a linear similarity measure between
pairs of objects - here, items and users - in the form SW (u, a) =
uTi Waj . A weak supervision setup is adopted where training is
based on relative similarity. In particular, at the t th round, a triplet
ut = ui , for some 1 ≤ i ≤ N , a+t ∈ I+i , a

−
t ∈ I−i is sampled. �e

objective is to order the similarity measures of the objects a+t , a
−
t

with a safety margin
SW (ut , a+t) ≥ SW (ut , a−t) + 1. (8)

To learn a scoring function that obeys (8), the authors use the
following squared-hinge loss, or L2 loss,

`2W (ut , a
+
t , a
−
t) =

(
max{0, 1 − uTt W(a+t − a−t)}

)2
, (9)

which is a common alternative to the `1 loss in binary classi�ca-
tion. Two special covariance matrix cases are considered. �e �rst
assumes a diagonal covariance matrix Σ which leads to a diagonal
mapping matrix W. We thus focus on the second case, referred to
as factored covariance [4]. �is approach models the distribution
of mapping matrices based on factorizing the covariance matrix
to capture separately correlations in the “input” (right side of the
mapping matrix, i.e., a�ributes in our se�ing) and in the “output”
(le� side, i.e., latent vectors) [4]. To that end, the authors in [4]
use the de�nition of a matrix variate normal distribution [12]. In
De�nition 5.1, ⊗ denotes the Kronecker product.

De�nition 5.1. A random matrix X ∈ RK×L is said to have a
matrix variate normal distribution with mean matrix W ∈ RK×L
and covariance matrix Ω ⊗ Λ, where Ω ∈ RK×K and Λ ∈ RL×L
are both symmetric and positive semide�nite (PSD), if vec(X) ∼
N(vec(W),Ω⊗Λ). Matrix variate normal distributions are denoted
by N(W,Ω ⊗ Λ).

�e same unconstrained objective of AROW [5] to update the
model parameters W and Σ is adopted and revisited in [4] for the
AROMA matrix se�ings. In the matrix variate normal distribution
case, the convex objective becomes

DKL (N(W,Ω ⊗ Λ)| |N(Wt−1,Ωt−1 ⊗ Λt−1))

+
1
2r

(
max{0, 1 − uT W(a+ − a−)}

)2
+

1
2r (u

T Ωu)((a+ − a−)T Λ(a+ − a−)), (10)

where r > 0 is a regularization parameter and DKL denotes the
Kullback-Leibler divergence. �e �rst summand of the objective
ensures that the parameters do not change radically from round
to round. �e middle summand penalizes classi�cation errors. As
hinted by the last summand which aims at minimizing the eigen-
values of the con�dence matrix Σ = Ω ⊗ Λ, the more examples, the
higher the con�dence should be.

Denote at = a+t − a−t . �e global minimum of the objective (10)
was shown to be obtained by the following update rule [4],

Wt =Wt−1 +
max{0, 1 − uTt Wt−1at }
uTt Λt−1ut aTt Ωt−1at + r

Λt−1ut aTt Ωt−1, (11)

Ωt = Ωt−1 −
uTt Λt−1ut

(uTt Λt−1ut)(aTt Ωt−1at) + Kr
Ωt−1at aTt Ωt−1, (12)

Λt = Λt−1 −
aTt Ωt−1at

(aTt Ωt−1at)(uTt Λt−1ut) + Lr
Λt−1utuTt Λt−1. (13)

5.2 LearnAROMAMapping
In our case, instead of minimizing the squared-hinge loss `2W , we
wish to maximize the logarithm of the sigmoid function, namely

ln 1
1 + e−uT Wa

, (14)

or alternatively, we want to minimize

ln
(
1 + e−uT Wa

)
, (15)

Unfortunately, using (15) as the second summand of the objective
(10) does not lead to an analytically solvable update for W. �ere-
fore, we propose to approximate (15) by the hinge loss function
given by

max{0, 1 − uT Wa} (16)
rather than the squared-hinge loss used in (10). As shown in Fig. 2,
the two losses are similar.

Figure 2: Hinge loss vs. natural logarithm of a sigmoid func-
tion.

In this case, the update rule for W (11) reduces to

Wt =Wt−1 +
1
2r Λt−1ut aTt Ωt−1, (17)

if uTt Wat < 1. Otherwise, no update is required. �e updates
concerning the covariance matrix components (12) and (13) remain
unchanged. Our modi�ed AROMA is summarized in Algorithm 3.

Again, once W is estimated, the resulting item latent vectors are
then given by (7).

5.3 Complexity Analysis
LearnMap requires storing the K × L matrix W and thus requires
a memory of KL. �e time complexity of each stochastic gradient
descent update is KL as well. LearnAROMA uses a total memory
of KL + K2 + L2 to store the mean matrix W and the covariance
matrices Ω and Λ. �e time complexity of each step is KL+K2 +L2

as well since it involves addition to all elements of the matrices.

Algorithm 3 LearnAROMA
Input:

S(A1) - feedback of N users onM1 mature items
ui , 1 ≤ i ≤ N - users latent vectors

aj , 1 ≤ j ≤ M1 - mature items a�ribute vectors
r - regularization parameter

Output:
W - K × L a�ribute-to-feature mapping matrix

1: repeat
2: draw (i,p,q) from A1
3: de�ne ut = ui , at = ap − aq
4: if uTt Wat < 1 then
5: update Wt using (17)
6: end if
7: update Ωt using (12)
8: update Λt using (13)
9: until convergence

6 EXPEDITING RANDOM EXPLORATION
Consider a new item (cold-start) j ∈ A2. Our initial estimate for
its latent vector is solely content-based since we do not have any
ratings yet for this item and is given by v̂0j = Waj, where W is
obtained using either mapping presented in Section 4 or 5. We now
dynamically update the item latent vector estimate as well as its
bias with each new rating. We considered estimating the cold-start
items bias using content-based mapping, similarly to our latent
vector estimation, but this approach did not yield good results.

�e BPR-MF criterion is applied on couple of items, one positive
and one negative. �erefore, for each new positive feedback, we
draw a negative item from the training set for the user who provided
the feedback, and vice versa.

For a positive feedback, we denote j = p. �e optimization
criterion is then given by

max
v̂p,b̂p

∑
i
ln 1

1 + e−x̂ipq
− λ | |v̂p − v̂0p | |2 − λb b̂2p . (18)

Here i denotes t exploring users, chosen randomly from A2, that
rated the new item p, and x̂ipq = ŷip −ŷiq = uTi v̂p −uTi vq +b̂p −bq
where q denotes the drawn negative item for the corresponding
user, namely it holds that q ∈ I−i . �e optimization criterion for a
negative ranking is obtained by inverting the roles of both items.
If necessary, a traditional regularizer is added to avoid over��ing
by controlling the norm of the latent vector, that is λ1 | |v̂p | |2. �e
resulting DynamicBPR algorithm is shown in Algorithm 4. Dy-
namicBPR is applied to each cold-start item separately, as new
interactions with this item are arriving. In the algorithm descrip-
tion, A2(t) includes t raws randomly chosen from A2(t). Note,
that no more than t ratings are used to characterize the new item.
In addition, we note that since the users latent vectors are �xed,
the optimization is performed only with respect to the items latent
vector and is convex. �erefore, convergence is guaranteed.

It is worth mentioning that this online approach does not require
retraining the mature model, but only trains the cold-start item
latent vectors separately. We also considered updating the mapping
matrix along with the items latent vectors, but this method did

not yield any signi�cant improvement. �is suggests that, given
enough mature items and users, the mapping is not drastically
changed by new arriving entities.

Algorithm 4 DynamicBPR
Input:

v̂0j =Waj - new item j initial latent vector, j ∈ A2
A2(t) - t raws randomly chosen from A2

ui , 1 ≤ i ≤ N - users latent vectors
α ,αb - update step sizes

λ, λb - regularization parameter
Output:

v̂tj - new item j estimated latent vector
1: repeat
2: draw a user i from A2(t)
3: if j ∈ I+i then
4: draw q ∈ I−i from A1 and set p = j
5: else
6: draw p ∈ I+i from A1 and set q = j
7: end if
8: x̂ipq ← ŷip − ŷiq
9: if j ∈ I+i then
10: for 1 ≤ k ≤ K do
11: v̂pk ← v̂pk + α

(
e−x̂ipq

1+e−x̂ipq
uik − λ

(
v̂pk − v̂0pk

))
12: end for
13: b̂p ← b̂p + αb

(
e−x̂ipq

1+e−x̂ipq
− λb b̂p

)
14: else
15: for 1 ≤ k ≤ K do
16: v̂qk ← v̂qk + α

(
− e−x̂ipq

1+e−x̂ipq
uik − λ

(
v̂qk − v̂0qk

))
17: end for
18: b̂q ← b̂q + αb

(
− e−x̂ipq

1+e−x̂ipq
− λb b̂q

)
19: end if
20: until convergence

7 NUMERICAL EVALUATION
�is section presents our numerical evaluation and demonstrates
the two aspects of our random exploration expedition approach.
First, we evaluate the initial estimate of the new items latent vectors
using LearnMap and LearnAROMA. �en, we examine the online
update of these vectors with DynamicBPR while feedback on the
new items is arriving.

7.1 Dataset
We use the MovieLens2K dataset released by HetRec 2011.1 �is
dataset provides ratings values which we convert to binary feed-
back, assuming that users tend to rate movies they have watched
[8]. If movie j is rated by user i , then j ∈ I+i , namely any rating is
considered as positive feedback. If movie j is not rated by user i ,
then j ∈ I−i . We consider N = 2113 users and M = 6590 movies
and randomly split the dataset so that N1 = 0.2N andM2 = 0.2M
(see Fig. 1); that is, the number of users in the test set correspond
to 80% of the total number of users and the cold-start items are 20%
1h�p://grouplens.org/datasets/hetrec-2011

Set Users Items Events
A1 N = 2113 M1 = 5328 845761
A2 N1 = 421 M2 = 1262 18554
A3 N2 = 1692 M2 = 1262 95003

Table 1: Dataset split

of the total number of movies. Table 1 summarizes the dimensions
of the resulting model training set A1, dynamic training set A2,
and test set A3. In the table, Events refer to the number of positive
feedback.

�e latent space dimension is set to K = 12.2 We consider genres
as movies a�ributes. �e a�ribute vector aj are binary vectors
of size L = 20, with the lth entry equals 1 if the movie exhibits
the lth a�ribute and 0 otherwise. We observed that exploiting
additional a�ributes such as movie directors or actors does not
signi�cantly improve the mapping performance, as previously seen
in [8]. �erefore, we focus only on genres as a�ributes.

Our algorithms were implemented using the MyMediaLite3 rec-
ommender system library, presented in [9]. �e library is free/open
source so�ware, distributed under the terms of the GNU General
Public License.

7.2 Performance Metric
�roughout the simulations, we adopt the area under curve (AUC)
per user, which is a common ranking accuracy measure, as eval-
uation metric [7]. �e AUC per user measures the ratio of pairs
correctly ranked with respect to the total number of evaluated pairs
in the test set and is de�ned as

AUC =
∑

(i,p,q)∈A3

1
N2 |I+i | |I

−
i |
δ (x̂ipq), (19)

where δ (x) = 1 if x ≥ 0 and δ (x) = 0 otherwise.

7.3 BPR-MF Model and Mapping Training
We �rst consider a scenario deprived of cold-starts, as a baseline.
Here, we perform the BPR-MF model training using LearnBPR algo-
rithm (see Section 3.3) on both A1 and A2 and use A3 for testing
(i.e., “weak generalization” se�ing). We then learn the a�ribute to
latent space linear mapping, using either the LearnMap algorithm
of [8] (see Section 4) or the LearnAROMA algorithm of Section 5.
Both the users and items latent vectors as well as the a�ribute-to-
feature mappings are learnt on the sets A1 and A2. We consider
both linear and quadratic mappings. However, since the quadratic
approach does not signi�cantly improve the ranking performance
and add complexity overhead, we only focus on linear mapping.

�e latent vectors in LearnBPR are initialized using a Gaussian
distributionN(0, 0.1). �e mapping matrix entries are initialized to
0 in both LearnMap and LearnAROMA. In the la�er, the covariance
matrices Ω and Λ are initially set to the K × K and L × L identity
matrices, respectively. �e hyperparameters are chosen via a basic
grid search. For LearnBPR, we use α = αb = 0.05, λ = 0.02 and
2Increasing the latent space dimension did not yield signi�cant improvements on
performance.
3h�p://ismll.de/mymedialite

Method AUC per user
LearnBPR 0.86029
LearnMap 0.84710

LearnAROMA 0.84989
Table 2: Accuracies for “weak generalization” setting (no
cold-start)

Method AUC per user
LearnMap 0.61123

LearnAROMA 0.62811
Table 3: Accuracies for “strong generalization” setting (cold-
start)

λb = 0. For LearnMap, we use α = 0.05, αb = 0.05, λ = 0.01 and
λb = 0.05. For LearnAROMA, we set r = 100.

Table 2 presents the AUC per user of the three algorithms over
the test set A3: LearnBPR, LearnMap and LearnAROMA. Examin-
ing Table 2, we observe that the LearnBPR outperforms the two
other algorithms that are replacing the items latent vectors vj with
their mapping-based estimates v̂j = Waj . �is is not surprising
since the two mapping based algorithms includes fewer degrees of
freedom. Moreover, the results also reveals that the LearnAROMA
algorithm is slightly more accurate than the LearnMap algorithm.
It is noted that we report these results just to demonstrate that
the mapping is well trained using both algorithms and provides
recommendations that are only 1.5% less accurate than the “upper
bound” accuracy provided by the LearnBPR algorithm.

7.4 Initial Latent Vectors Estimates
We return to our original se�ing and investigate the performance
of the mappings presented in Sections 4 and 5 with respect to new
items. Here, we perform the BPR-MF model training and learn
the mapping on the set A1. �en, the cold-starts latent vectors
of new items M1 < j ≤ M are computed using (7) (i.e., “strong
generalization” se�ing). Table 3 presents the AUC per user using
the initial latent vectors estimates of the new items over the test
set A3.

�e results reveal that learning themappingwith the LearnAROMA
algorithm provides a 2.7% li� in AUC for new items over the Learn-
Map algorithm of [8]. Since our approach outperforms LearnMap, it
is obviously also be�er than the baselines presented in [8] (i.e., KNN
and linear based methods [8]). We note that random initialization
of the latent vectors yields AUC = 0.5 as expected.

7.5 Dynamic Update
Lastly, we demonstrate our approach for expediting random explo-
ration, where we receive a prede�ned number of exploring users
(randomly chosen) interactions with the new items, taken from
A2 (i.e., “strong generalization” se�ing). �e test results calculated
overA3 are presented with respect to the number of available user
feedback, either positive or negative, for each item, averaged over
M2 = 1262 items. We apply our DynamicBPR algorithm using three

Figure 3: Expediting random exploration using attribute-to-
feature mapping

di�erent initial estimations for the cold-start latent vectors: random
N(0, 0.1), LearnMap (Algorithm 2) and LearnAROMA (Algorithm
3).

Figure 3 presents the AUC accuracies as functions of the num-
ber of explorative interactions of all three methods along with the
LearnBPR baseline described in Section 7.3 that serves as an “upper
bound”. We observe that the LearnAROMA based DynamicBPR
performance approaches the BPR-MF trained on both A1 and A2,
namely with no cold-start items. In particular, the LearnAROMA
based DynamicBPR reaches 95% accuracy of the LearnBPR “upper
bound” using on average 71% less explorative interactions when
compared to random exploration (21 vs. 72 interactions). In addi-
tion, the LearnAROMA achieves higher accuracy level than that
achieved by LearnMap for large number of interactions when explo-
ration reaches saturation and more interactions yield only marginal
improvements.

Finally, we focus on the initial phase of the exploration where
the bene�ts of our LearnAROMA based DynamicBPR are more
pronounced. Accordingly, Fig. 4 presents a zoom-in of Fig. 3 into
the low number of interaction region. Examining the �gure, the
superiority of our approach over the LearnMap of [8] and espe-
cially over random exploration is evident. In addition, we note that
LearnAROMA is signi�cantly less sensitive to the choice of hyper-
parameters in LearnBPR than the LearnMap algorithm. �at is,
LearnAROMA would yield similar performance even if the model
training phase was not performed with optimal hyperparameters,
whereas the performance of LearnMap would decrease.

Additional experiment results where we have also updated the
mappings individually for each new item with the incoming inter-
actions showed no signi�cant improvements on performance and
are thus not presented here.

8 CONCLUDING REMARKS
In this work we consider ways to expedite new item exploration
using item a�ributes in MF-CF based recommenders. In particular,

Figure 4: Expediting random exploration using attribute-to-
feature mapping (zoom-in).

we adopt the approach of [8] where an a�ribute-to-feature map-
ping is learnt and used to provide an initial representation for new
items, i.e., an initial estimate for their latent vectors. Similarly to
[8], we also consider a linear mapping. However, to do so, we adapt
the AROMA [4] algorithm, that performs convex optimization for
weight matrix estimation in the context of binary classi�cation,
to the ranking problem. �e resulting algorithm, referred to as
LearnAROMA, allows us to learn the a�ribute to feature mapping.
�en, we provide an initial estimate for the new item latent vectors
and continue to the exploration phase where users interactions are
arriving. To leverage the initial latent vector estimation with the
incoming ratings, we present DynamicBPR, a simple update algo-
rithm based on a regularized maximum likelihood convex objective.

Numerical evaluation reveals that our LearnAROMA algorithm
provides be�er initial characterization of the new items than the
LearnMAP algorithm of [8] and shows a 2.7% li� in AUC. In addi-
tion, we demonstrate the expedition of the exploration phase where
our simple update algorithm DynamicBPR achieves comparable ac-
curacies as those provided by a model fully trained with all ratings
(an “upper bound” on accuracy) for a rather modest number of ex-
ploring users when compared to random exploration. In particular,
our algorithm requires on average 71% less exploring users than
random exploration to reach a 95% accuracy.

In this work, we consider a random exploration se�ing where
random users are selected to explore the new items (see Section
6). Nevertheless, the bene�ts of smart exploration, where users
who are more likely to interact with the new item are selected for
exploration, were recently demonstrated in [6]. In future work, we
plan to combine the user selection methods of [6] and the latent
vector update algorithm of Section 6 and evaluate the overall li� in
performance. Another possible extension of this work is to exploit
the estimated con�dence matrix along with the mapping, to tune
the regularization parameter of DynamicBPR. Indeed, items with
a�ributes for which our mapping has a higher con�dence level are
likely to have be�er initial estimate and thus should have a higher
regularization term.

REFERENCES
[1] O. Anava, S. Golan, N. Golbandi, Z. Karnin, R. Lempel, O. Rokhlenko, and O.

Somekh. 2015. Budget-constrained item cold-start handling in collaborative
�ltering recommenders via optimal design. Proc. WWW (2015).

[2] D. Argawal and B.-C. Chen. 2009. Regression-based Latent Factor Models. Proc.
KDD (2009).

[3] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson
sampling. In Advances in neural information processing systems. 2249–2257.

[4] K. Crammer and G. Chechik. 2012. Adaptive regularization of weight matrices.
Int. Conf. on Machine Learning (2012).

[5] K. Crammer, A. Kulesza, and M. Dredze. 2009. Adaptive regularization of weight
vectors. NIPS (2009).

[6] D. Drachsler-Cohen, O. Somekh, S. Golan, M. Aharon, O. Anava, and N. Avigdor-
Elgrabli. 2015. ExcUseMe: asking users to help in item cold-start recommenda-
tions. Proc. RecSys (2015).

[7] Tom Fawce�. 2006. An introduction to ROC analysis. Pa�ern recognition le�ers
27, 8 (2006), 861–874.

[8] Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and L. Shmidt-�ieme.
2010. Learning A�ribute-to-Feature Mappings for Cold-Start Recommendations.
ICDM’10: Proceedings of the 10th IEEE international conference on data mining
(2010).

[9] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Shmidt-�ieme. 2011. MyMedi-
aLite: a free recommender system library. Proceeding of the ��h ACM conference
on Recommender systems (2011), 305–308.

[10] A. Gunawardana and C. Meek. 2008. Tied Boltzmann machines for cold starts
recommendations. Proc. RecSys (2008).

[11] A. Gunawardana and C. Meek. 2009. A uni�ed approach to building hybrid
recommender systems. Proc. RecSys (2009).

[12] A. K. Gupta and D. K. Nagar. 1999. Matrix variate distributions. Chapman and
Hall/CRC (1999).

[13] Y. Koren. 2008. Factorization meets the neighborhood: a multifaceted collabora-
tive �ltering model. Proc. KDD (2008).

[14] Y. Koren and R. Bell. 2010. Advances in collaborative �ltering. In Recommender
systems handbook. Springer, 145–186.

[15] N. Liu, X. Meng, C. Liu, and Q. Yang. 2011. Wisdom of the be�er few: cold start
recommendation via representative based rating elicitation. Proc. RecSys (2011).

[16] S.-T. Park and W. Chu. 2009. Pairwise preference regression for cold-start
recommendation. Proc. RecSys (2009).

[17] S.-T. Park, D. Pennock, O. Madani, N. Good, and D. DeCoste. 2006. Naive �lterbots
for robust cold-start recommendations. KDD’06: Proceedings of the 12th ACM
SIGKDD international conference on knowledge discovery and data mining (2006).

[18] Michael J. Pazzani and Daniel Billsus. 2007. Content-based recommendation
systems. In�e adaptive web. Springer, 325–341.

[19] S. Rendle. 2012. Factorization machines with libFM. ACM (2012).
[20] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Shmidt-�ieme. 2009. BPR:

Bayesian personalized ranking from implicit feedback. UAI (2009).
[21] Ste�en Rendle and Lars Schmidt-�ieme. 2008. Online-updating regularized

kernel matrix factorization models for large-scale recommender systems. In
Proceedings of the 2008 ACM conference on Recommender systems. ACM, 251–258.

[22] R. Salakhutdinov and A. Mnih. 2008. Probabilistic matrix factorization. NIPS
(2008).

[23] Martin Saveski and Amin Mantrach. 2014. Item cold-start recommendations:
learning local collective embeddings. In Proceedings of the 8th ACM Conference
on Recommender systems. ACM, 89–96.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Pure CF Techniques
	2.2 Hybrid Techniques

	3 Problem Formulation
	3.1 Model Description
	3.2 High-Level Framework
	3.3 BPR-MF Model Training

	4 Attribute-to-Feature Mapping
	5 AROMA-based Mapping
	5.1 Preliminaries
	5.2 LearnAROMA Mapping
	5.3 Complexity Analysis

	6 Expediting Random Exploration
	7 Numerical Evaluation
	7.1 Dataset
	7.2 Performance Metric
	7.3 BPR-MF Model and Mapping Training
	7.4 Initial Latent Vectors Estimates
	7.5 Dynamic Update

	8 Concluding Remarks
	References

